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In this paper, the integer complex multiplier and adder over the direct sum of two
copies of a finite field is specialized to the direct sum of the rings of integers modulo
Fermat numbers. Such multiplications and additions can be used in the implementation
of a discrete Fourier transform {(DFT) of a sequence of complex numbers. The advantage
of the present approach is that the number of multiplications needed for the DFT can be
reduced substantially over the previous approach. The architectural designs using this
approach are regular, simple, expandable and, therefore, naturally suitable for VLSI

implementation.

. Introduction

Recently, the authors (Refs. 1, 2) developed a new method
for computing a DFT using the direct sum of two copies of
residue number systems. A principal advantage of this algo-
rithm is that a complex integer multiplication can be computed
by using similar integer multiplications in two parallel inde-
pendent residue channels. Using the ideas of Cozzens and
Finkelstein (Refs. 1, 2), it is shown in this article that a com-
plex integer DFT can be computed by multiplication, modulo
a Fermat number in two parallel independent residue channels.
Such a multiplication over the direct sum of two copies of
the rings of integers modulo Fermat numbers can be used in
the implementation of a systolic array of the DFT as devel-
oped by Kung (Ref. 3).

Il. Arithmetic Over the Direct Sum of
Two Copies of Finite Rings Modulo A
Fermat Number

Let F, =227 + 1 be a Fermat number and let Z. be the
ring of re51dues of integers modulo £, . Further, let (- 13 denote

i8

the negative of integer one and let i denote the solution of
equation x? = -1. Finally define the set Zr [z] ={a+ibla b
€ Zg } of F: elements in such a manner that addition is
given by (a+ib)+(ctidy=(a+ b)F +i(b+ d)F and multi-
plication is given by (a + ib) (¢ + zd) = (ac - bd)F + i(bc +
ad)F where (x)F denotes the residue of a modulo E,. The

U commutative ring. (To show that Zg, [1] is a
commutatlve ring, it is only necessary to show that any
arbitrary three elements of Zg, [{] satisfies the postulates of
ring [Ref. 4, p. 1].)

+ 1 be a Fermat number; where
izzn—l

Lemma 1: Let F, = 22"
= 1. The solutions ofx +1=0mod F are s =

Proof: Since F, = 22" + 1, then 22" =-1 mod 22" + 1.
Thus,

(#22"1)2 =-1 mod 22" + 1

Hence, s = +22™ ! are the solutions of x2 + 1 =0 mod F..
n



Next we map an element ¢ + ib in Zp {i] into (a + sb)Fn.
It is easy to show that such a mapping is a homomorphic
mapping. It was shown (Ref. 5) that if 5 is one of solutions of
x? + 1 =0 modulo F,, then the set {a +sbla, b e ZFn} isa
field with F, elements isomorphic to GF(F,), where F, is
considered as a prime number. If one uses both solutions of
x* + 1 =0 mod F,, ie., s for mapping an element into
(o, @), where a = (a + sb)p and &= (a - sb)Fn, then it is
shown in the next theorem that such a mapping is an isomor-
phic mapping and the set {a,&| a,EeZFn}_is the direct sum of
2 copies of Z;, of F? elements.

Hence, by an extension of the ideas given in Ref. 5, the
following important theorem, a special case of Lemma 2.3 of
Ref. 1, can be proved. '

Theorem 1: Let ZF,, [i] = {e + ibla,b € Zy } be the ring
with respect to addition and multiplication modulo E,. Then
the direct sum of 2 copies of ZFn, ie.,

an = ZFn + ZFn = {o,00| a,b?eZFn}

where (a®) + (8,8) = (a + B, & + B) and (a;@) * (8.8) = (a,08)

is a ring of F’:" elements which is isomorphic to the ring

Proof: By Lemma 1, integers s = +22" 1 are the solutions
of x> + 1=0mod F, forn> 1. If a+ib € Zp [i], thenlet
¢ be the mapping

pratib>(@* by, (@~ sb)g)= @D (1)
where

o =(at sb)Fn

E (a - Sb)Fn

2271

s

To show that ¢ is an isomorphism, one must show that ¢
is both one-to-one and onto and that ¢ preserves addition and
multiplication. To show that ¢ is onto, one needs to demon-
strate that given an arbitrary element, (a%) € SFn, there
exists an element a + ib € ZF,, [] such that ¢(a + ib) = (@)
is an element of SFn. Equation (1) implies that

2n—1

a+?2 b=amodF, (22)

a-22""1 b=amod F, (2b)

Summing Egs. (2a) and (2b) yields
2¢ = o +0%mod Fn

Since (2, Fn) = 1, one can solve for q, i.e.,

as=2 (@+ @) =-22"1 (« +'&;)moan

Subtracting Eq. (2b) from Eq. (2a) yields

22" M1 p= g - amod F,

Since (2277141, F,) =1, one can solve for b, i.e.,
b=2-2""1"1 (@-@)=-22"""1 (a- W mod F,

Hence, the solutions of the system of congruences given in
Egs. (2a) and (2b) are

a=-22"1 (@ + %) mod F,

()

b=-22"""1 (a- W) mod F, (3b)
Thus by Eqgs. (32) and (3b) it is seen that (a,8) € Zg, is the
image of @ + ib € Z; [i] under the mapping ¢. This proves
that ¢ is an onto mapp?ng.

In order to show that ¢ is one-to-one, assume ¢(z + ib) =
¢(c + id). It follows from Eq. (1) that ((a + sb)Fn, (a- sb)Fn, =
(c+ sd)Fn, (c- Sd)F,,)- This implies that

atsh=c+sdmodF, (4a)

a-shb=c-sdmod F, (4b)

Summing Eqs. (4a) and (4b) yields 24 = 2¢ mod F,,. But since
(2, F,) = 1, a = ¢ mod F,,. Subtracting Eq. (42) from Eq. (4b)

yields 2sb = 25d mod F,,. Thus, since (2s, F,) =1, b =d mod
F,. Hence a +ib = ¢ + id and ¢ is a one-to-one mapping.

To show that ¢ preserves multiplication and addition, let
a +ib and ¢ + id be arbitrary elements in Zg, [i]. Then

¢ ((@+ib) + (¢ +id)) d(@atc)ti(b+d)

((@a+e)+s(B+d),(a+c)

-s(+d)
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It

(a4 sb, a-sb)+(c+sd, c-sd)

¢ (@ +ib)+ ¢ (c-id)

and

¢ ((@+ib)* (c+id)) = ¢ ((ac-bd)+i(bc +ad))

i}

((ac - bd) + s (be + ad), (ac - bd)

-5 (be +ad))

((a +sb) « (¢ + sd), (a - sb)
* (c-sd))

(a+sh,a-sb): (c+sd, c-sd)

il

p@tib)¢(ctid)

Hence, ZF, [1] is isomorphic to the ring Sg, and the theorem
is proved.

Remark 1: An inverse mapping ¢~! which maps (a@) € Sp,
into Zp, [i] is defined by

¢ (a, @) >atib Q)
where @ and b can be computed by Eq. (3).

It was shown (Ref. 6) that the multiplication by e powers
of two modulo F,, is accomplished simply by a cyclic shift of
e bits. Thus by Eq. (1) and Eq. (3), the arithmetic needed to
compute the mapping ¢ and its inverse ¢~! requires only
cyclic shifts and additions modulo F,,. As a consequence, both
mappings are easily implemented with VLSI technology. Also
by Theorem 1, the operations needed to perform integer
complex multiplication in Zg, [i] only require two integer
multiplications modulo F,. Such multiplications modulo F,
can be implemented by using a new VLSI design of a single
chip developed in Ref. 7.

To perform multiplication and addition in Zg, [i] or its
equivalent S, , one must determine an F, such that the results
of the computations lie in an[i]. The fermat number F; is
sufficiently large for a good many applications. However, for
some applications, larger dynamic range is required to keep
the results of a computation within Zg, [i]. This constraint
sometimes forces F, to be too large to be convenient for
computations by VLSI technology. To remedy this situation,
using the ideas in Ref. 8, complex multiplications are extended
in this section to a ring which is the direct sum of Zg, i,
Zpe I, .., and Zp,[i], where for each j, Zpk+j[i] is

20

represented by two copies of Zp, . To achieve this, the

+*
following theorems are needed.

Chinese Remainder Theorem: If m,, m,, ..., m, are rela-
tively prime in pairs, then the system of congruences, x = ¢,
mod m,, for 1 <n <r has a unique solution x given by

4
x = Z ¢, M M* mod M

(6a)
n=1
where M =m, m, ...m, = mM, =mM, =...=mM,and
M;;! uniquely satisfies (mod m,,) the congruence
MM =1mod M, (6b)

for 1 <n <r. For a detailed proof, see Ref. 9.

Let M=F, + Foy ... FE =%+ 1)1 +1). ..
2"+ 1) = F My, = Fpp My = .. = E M, where | Sk<r
and M, = M/Fn. Since Fy, Fyyys - - ., F, are pairwise relatively
prime, by the Chinese remainder theorem, it is shown in
Appendix A that the congruences

x = ¢, modF, fork<n<r (72)
have a unique solution x given by
¥ r
x =y e MM =" c (M[F,)M* mod M
n=kK n=k
(7b)
where
M= 9=(=k) = o (~(r=)mod ofetl (7¢)
and
k
~1 = _y=1 o= 2
MU= im0 )
= 2@ --mymoaz™! (2" 4 fork<n<r

Here M1 uniquely satisfies the congruence M, M, =1 mod
Fyforksn<r.

The number of additions and multiplications modulo F,
needed to compute Eq. (7b)arer-kandr-k + 1.

Theorem 2: Let M = Fy + F,,, ... F, be the product of
distinct Fermat numbers, Next let Zy,[i] = {a +ib|a, b € Z);}
where Z,, is a set of residues, modulo M. Then the direct sum
of finite rings




Sy, lil = sz [i] + zpk+1 [+ -+ ZFr[i]

where addition and multiplication are defined, respectively,
by

(ak’ ak+1’ et ar) + (ﬁk’ ﬁk.’.l’ AL ] Br)
= (@t B 0y FBergs -5 % +B)
and

v ®)* B Bnys -+ B)
sa,*B)

(ak, O g5

=@ * B %y Bryo - -

is a ring of M? elements which is isomorphic to the ring Z,, [
Proof: If a + ib € Zy;[i], then let 6 be the mapping

Oa+ib)>(@+ib)y , (@ +B), ..., @ b))

k1 T £

) ®

=(a, +ib,.,a +ib v, Yib)
Fk Fk} F b H y Fr

= (0 0y
= 1 = 1 <Kn<s
where &, = (@ + ib)r, = aF, t+ ibF, fork<n<r.

It is easy to show that 6 preserves addition and multiplica-
tion. To show that 8 is onto and one-to-one, it suffices to
show that given an arbitrary element (o, Gpqs -.., &)
€ Sy;[i], there exists an unique element a + ib € Zg,, [i] such
that ¢(a + ib) = (04, Oyy, - - - » &). Equation (8) implies that

a=a, modF, (9a)
n
and
b = b, modF, (9b)

for k < n <r. By Eq. (7), the unique solution of the systems
of congruences in Egs. (9a) and (9b), are

k1 L
4 (MF,) - 2CCR)mod 277 1§ ap (MIF,)
n=k+1

Y
il

X 2(2"—(»—-n+1))mot:l2n+1 (22k _ 1) (9C)

and

5 o
b= ka (M/F,) » 2C0-FDmod 270 4 Z bFn (M/F,)

n=k+1

X 2(2"—(r-n+1)) mod2™*1 (22k -1

It follows that each element (aFk +ibpy, Apg,y T brgy -
ap, + ibp,) of Sy, is the image of a unique element @ + ib of
Zyr[i]. This proves that 6 is one-to-one and onto and hence
an isomorphic mapping of Zy, 7] onto S, [i].

Remark 2: An inverse mapping 6~' which maps (o,
Qppys v > 0,) €Sy into @ +ib € Zy,[d] is defined by

07 oy Oy gy v v ) Ak ib (10)

where ¢ and b can be computed by Eqgs. (9¢).

Theorem 3: Let M = Fy + Fy,, ... F,, where (F, )= 1.
Next let Zy,[i] = {a+ibla, b € Zy;} be the ring in Theorem 2.
Then the direct sum of Zg, [i], Zg,, (1], ..., and Zg [i],
where for each j, Zpk+j[i] is represented by two copies of
ZFk+j’ is

Ny Z. +Z )+ (Z, +Z to.+(Z, +Z
M (Fk :Fk) (Fk+1 Fk+1) (Fr Fr)

=. {(ak’ _a-k)’ (ak+1’_&k+1)’ rrry
(@.@) | (@, @,)e (ZFn +ZFn)}

where addition and multiplication are defined, respectively,
by

(@ T, @y T - -+ (@, F))

+(Byes B Brorys B - -+ (B, B)

= (o + B T * B @y + By Ty ¥Bin)s
(a,+8,0,+ Fr))

and

(@ Ty @pgs Ty o - -+ (@ TY)

X (B> Bd Bren> Begr)s - - s B B)

= ((y * B @ * Biohs @y * Brogs Ty By )
(@, 8, B))

is a ring of M? element which is isomorphic to the ring Z,,[il.
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Proof: Let § = ¢ - 0 be the composition of the mapping ¢
given by Eq. (1) and 8 given in Eq. (8). If 2 + ib € Z,;[i], then
Bis

6:‘1 + ib - ((ak’ ak); (ak+1’a-k+1)’ A (ar’ Er)) (1 la)

where s, = £22""! are the solution of X2 + 1 = mod F, and
@, = (a+ s,b)r, and & = (a - §,b)p,, for k< n<r. Some 0
and ¢ are an isomorphic mapping of Z,,[] onto §,,[#] and an
isomorphic mapping of Sg, [{] onto Sg,, respectively, it is
evident that 6 is an isomorphic mapping of Z,, [z']Aonto Spr-
The arithmetic needed to perform the mapping 6 given in
Eq. (11a) only requires cyclic shifts and addition modulo F,.

Remark 3: The inverse mapping of 9, i.e., 81 =671 + 7
which maps an element in S, into an element in Z,,[i] is

A— — —_— — .
0710 (0 @), (g > Tgyg)s - - -5 (@, @) >a+ib

(11b)

where Eq. (11b) can be computed by the two inverse mapping
¢~t and 671. In other words, Eq. (5) can be used first to
convert an element ((a, &), (0yys Tpeqs -+ > (@, @,)) in
Sy into an element (ap, +ibp,, ap,,, +ibpy, s -+ a5, + ibp,)
in Sy, [#]. Next Eq. (9a) can be used to convert an element
(ar, + ibpy, apy,, tibp,, s - ., ap, * ibp,) into an element
a+ib e Zylil.

In the following, some examples are given to illustrate how
the above mappings can be used to efficiently perform com-
plex multiplication.

Example 1: Compute (3 + i2) » (1 + i4) mod 17, where
3+i2and 1 +i4 e Z,[i] by means of the direct sum of two
copies of Z,,.

Consider now this operation in the image ring sz. The
solution of x2 + 1 = 0 mod F, are 22" = £22%7T'= 44,
Thus, by the mapping ¢ given in Eq. (1), one obtains

(3+i2) = (3+4X2,3-4X%2) = (11,-5)
(12)
(1+id) = (1+4X4,1-4%X4) =(0,2)
Multiplying two images given in Eq. (12) yields

(11,-5)+(0,2) = (0,7)

The corresponding element a4 + ib of (0, 7) under the inverse
mapping ¢~ given in Eq. (3) is

a=-220+7)=-8+7Tmod17=-5

22

b=-2(0-7)mod 17=14

The final result is =5 + 714 which is verified readily to be the
correct answer,

Example 2: Compute (4 +i5) * (17 + i3) mod M = F\ F, =
5+ 17 = 85, where (4 + i5) and (17 + i3) € Zg [i] by means
of the direct sum of Z;[i] and-Z,[i], where Z;[i] and
Z (7] are represented by 2 copies of Z; and Z, ,, respectively.

From the mapping Eq. (11), one obtains

(4+15)gs = (442 5),,(4-25))),
((4 + 22 * 5)17’ (4 - 22 ¢ 5)17))
= (4,4, (7,1),,) (13)

and

(17 + 13)g,

w

(((017+2+3),,(17-2+3),),

((17+2%+3),,,(17-2% + 3),,)

(G, D, (12,-12),)

where 2 and #22 are the solutions of x2 + 1 =0 mod 5 and
the solutions of x2 + 1 = 0 mod 17, respectively. Multiplying
two images given in Eq. (13) yields

((4’ 4)51 (7’ 1)17) y ((3> 1)5: (12’ "12)17)
= (2,1, (-1,5),,) |

The corresponding elements ¢ + ib € Zg[i] and (c + id) €
Z,, 1] of (2, -1)4 and (-1, 5),, under the first inverse mapping
¢!, given in Eq. (5), are

(2,-1); = ((2)Q-D+i-1)2+1))=(-2-i3),

and

("1’ 5)17 = ((—23) (_1 + 5) + l(~2) (-1 - 5))17 = (2 - Z‘5)17

Thus ((2, -1)g, (-1, 5);4) = ((-2 - 3);, (2 - i5),,). Finally,
the corresponding element a + ib € Zgg[f] of ((-2 - i3),,
(2 - i5);,) under the second inverse mapping 8~! given in
Eq. (10) is

a = (-2)+136+2 + 120

= (-272 +240) mod 85 =53



and

b = (-3)« 136 +(=5)* 120

= (-408 - 600) mod 85 =12

The final result is & + ib = 53 + {12 which is verified readily to
be the correct answer.

ll. Discrete Fourier Transform Over Zy [i]

In this section, a d point Fourier transform over ring Z,,[i]
or its equivalent S,, is developed to compute the usual digital
Fourier transform of complex numbers. It will not be neces-
sary for the transform length to be a power of two. For the
Fourier transform of complex integer numbers in Z,,[i], one
needs to scale the powers of the dth root of unity from com-
plex numbers to complex integers in Zy,[¢]. Then the compo-
nents of the transforms over the ring Zy,{] or its equivalent
Sy are required to remain in the interval - (M - 1)/2 to
(M - 1)/2. These results can then be scaled back from the
complex integers to the original complex numbers to give a
DFT of complex numbers without round-off error. For
example, to compute a d point DFT of integer complex
numbers a, = &, + 16, with la,, |, 18, <4 =21, ie,

d-1
nek
Ak Z anw
n=0

d-1
Z (an + iBn) ' (xn,k + iyn,k)’
n=0

= ; ; ; K o
iv}.lere w = exp (i2n/d) is a dth root of unity and """ = Xk
Wy g

The components of the truncated complex number w™'¥
are first converted to integers with the dynamlc range B =22,
ie., -B <%, ., V,; <B. Here Gk =%, , +iy, p denotes the
scaled or1g1na1 complex number W™k, Next let the DFT of a,
using the scaled truncated sequence G*'¥ be denoted by Ak

Thus, Ak is defined by

d-1

T o= ~nek
Ak Z an w
n=0

d-1

= 3 (@F, - BT T i@, 8,5,
n=0

=5, +8, 17)

a4, = +iB
ok =¥+
nk yn,k
d~1

a2
]
™

¥ . -B7
%Xk " Prdnk

0

2 03

-1

’Ek ’Z"‘»Vn. nn,

b=0

To compute Eq. (17), one requires the final DFT in Eq.
(17) to lie in the same “dynamic range” as the complex
integers 4, and &"*¥, That is,

d-1
Wkl = E (anb?n,k - ﬂnj\);,k)
‘n=0

d-1
PR CARNCAMEI RV
n=0
< M-1)/2 (18)

and

d-1
Z (anj\);t, + ﬁ xn k)
n=0

-1
)_,“ (o, | 17, )+ 18,1+ 1%, )

< M-12

To satisfy Eq. (18) for all complex integer valued sequences
a and &"* such that |a,,, 18,] <4 =2M and |x, AN PARS
=22 it is sufficient to set

24+ BS(M-1))2 (19)

n -1
A=[/"—47] (20)

where [x] denotes the greatest integer less than x. The trans-
form 2;6 in Eq. (17) can be computed by using the direct sum

if 4 = B, then

23




of ZFk[z] Lt [, ..., and Zg [i1, where Z, [i] is
represented by two coples of ZF . Finally, the Z] s are
scaled back to the scale of 0r1gma1 complex numbers by B1

for 1 <k <d- 1. By Eq. (17), one observes that the powers
of roots of unity always have a truncation error due to approx-
imating the powers of roots of umty Evidently, the only error
made in this computation of A s is thlS truncatlon error. The
error analysis of the DFT caused by &"'* is illustrated in the
following section.

Example 3: Compute a 4-point DFT of a, by means of the
direct sum of two copies of Zg, , where 4, = a, =1 +iand
a, =a, =0.

The 4-point DFT of complex number of @,

4-1
A, =), a0 =y 1ib, (21)
n=0
where w = i is the 4th root of umty anda, = o +if . Since
d=4,F, =17, |a,l 18, 1A= 2* 1 =1, then by Eq. (19) the
dynamlc range constramt of the components of w” mk s
B =2 =2%(4 + 4+ 1)= 1. Thus, in this example, w""* =

«™*. This implies that Ix ol = x| <Band |ynk| =W, <
B, where ok = Xt zy and w"'k =x  tip, . That is,
& = o =1,= w-—zwz* w? = -1 and & P = -i,
Hence, the 4-point DFT of 4 becomes

4-1
A =Y ¢& " mod17
n=0
= 5, +ib, for0<k<3 (22)

The corresponding elements in S, of ¢, and &"7 in

Zg 7] under the mapping ¢ defined in Eq. (1) is

= 1+ =(1+2%-1,1-2%-1)=(5,-3)

where 22 is the solution of x2 + 1 =0 mod 17. Similarly, one
hasa, =1 +i1=(5,-3),4,=2;=0=(0, 0) =12,
Jl=1=4,-4),a= 1~( 1,-1), and &° = -i = (-4, 4).

Then Eq. (22) over S, becomes

A = (5,-3)3 +(5,-3)& +(0,00&* +(0,0) &*

(5,-3) 3° + (5, -3) & (23a)

24

Fork =0, 1,2, 3, Eq. (23a) becomes

A= (5,-3)3 +(5,-3)°
= (5,-3)(1, 1)+ (5,-3) (1, 1)
= (5,-3)*(5,-3) =(10,6)
A= 6.-3)&+(6-3) &
= (5,-3)(1,1)+(5,-3)(4,-4) > (23b)
= (5,-3)+(3,12)=(8,9)
4,= (0,0
A= (5,-3) w0’ +(5,-3) w°

= (5,-3)+(-3,5) = (2,2)

Taking the inverse mappi.ng ¢! defined in Eq. (5) yields

= (10, -6)

22-1

R

(-22%1 (10 - 6) - i22* 7' -1 (10 + 6))

= (-8)(#) +i(-2)(16))
= (32-132)=2+12
A, = (8,9

= ((-8) (8 +9)+i(~2) (8 -9)) =2i

Similarly, one has Zz =(0,0)=0and ‘Za = (2,2)=2.

Example 4: Compute a 4-point DFT of ¢, by means of the
direct sum of Zg, [} and Zg, [i], where Zp, [i] and Zg, |
are represented by two copies ZF and ZF , respectlvely Let
the input values be ¢, =4, =1 + z and @, =a, =0 where a,
o, +ip, €Z), [} forM=F *F,.

Since d = 4, M = 85 and |a, |, |8, <A =21 =1, then by
Eq. (19) the dynamlc range constramt of the components of

W KisB=2"2=85/(4 -4 1)=22,

In this example, x, .|, ¥, kl nek =
X, .+, . Thus otk = w" That is, @=w=1i &
wi $3 = w3 = -iand &% = w® = 1. Hence, a 4-point
transform DFT of 4, due to the scaled truncated sequence
Wk s

= 22 where w
~2



4-1
4, = a, &"'* mod 85
n=0
=5, +i5 for0<k<3 (23¢)

Taking the mapping 8 defined in Bq. (11) yields

a, =a, = a+dy

R

(Q+2+1,1-2+1),(1+2%+1,1-2%21)..)
5 17

= ((3,- 1), (5,-3),,)

where 2 and 4 are the solutions of x2 + 1 = 0 mod 5 and 17,
respectively. Similarly, one has a, = a; = 0 = ((0, 0),,
©,0),,), 3° = 1= (1, D5, (1, 1)), & =i =(2, -2,
(4, -4)_,), @ = -1 = (-1, -1)g, (-1, 1)), and &° = - =
((-2,2)s, (-4, 4),,). Thus, Eq. (23c) in S, becomes
~ _ ~0
Ak = ((3’ '1)5’ (5’ "'3)17) w
+(3, 1), (5,-3),,) &
+((0,0), (0, 0),,,) &*
+((0,0),,(0,0),,) &%
= ((39 —1)5, (5’ -3)17) wo

+((3, -1),, (5, -3),,) & (24a)

For k=0, 1, 2, 3, Eq. (24a) becomes

2
It

0 ((3,_1)5,(5’_3)17)(’50-_*_((3,_1)5,(5,_3)17) (30
= ((3>-1)5>(5?_3)17) ' ((l’ 1)5’(1’ 1)17)
+ ((3’ '1)5’ (57 "3)17) ‘ ((1’ 1)5: (1: 1)17)

= ((1’ "2)5> (10’ '6)17) (24b)

R
]

1 ((3’_1)5’(5’_3)17)30 +(3’—l)5’(5: -3)17)&51
= ((3’ "1)5s (Ss—3)17) * ((1: 1)5= (1’ 1)17)
+ ((3> "1)5> (5’ "3)17) b ((2a "2)5s (4’ '4)17)

= (4, 1), (8, 5),)

4, = ((0,0)4,(0,0),,)
-2;5 = ((3: "'1)5’ (5» "3)17) aio + ((3> 'l)ss (5’ "3)17) (:53
= ((2.2);,(2.2)1)

Taking the first inverse mapping ¢~ defined in Eq. (5) yields

- A= (1, -2)4, (10,-6) )

((-2>H(a-2

it

1-1

+ (22711 (1 +2)), ((-22%1) (10 - 6)

22-1

+i(-22° -1) (10 +6)

((-2) (1) + (1) (3), (-8) (4) +i(-2) (-1))

(@-i3),, 2 +12),,)

A, = ((4,1),,(8,5),,)
=((-2)@+D)+i-DE-1),(-8)(8+5)
+i(-2) (8~ 5))

= (0 +12);, (2 - 61),)
7, = (0+10);,(0+10),,)

A, = ((2+i0), (2 +10),,)

For k = 0, the corresponding element ;4~0 = 70 + igo of 2;) =
(1, -2)., (10, ~6).,) under the second inverse mapping 6!
5 17
given in Eq. (10) is
¥, = 2X 17260 modd 4.3
X 2(22~(@2-2+1))mod 23 (2% -1)
= 2X17X8+2+5X8+3=2mod 85

and

o

= (-3)(I7NX8+(2)*5+8+3=2mod 85
Thus,

Ao = ((1"2)5’(10,‘6)17)32+i2
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Using the same procedure for A for k = 1, 2, 3, one has

fmallyA ~2+z2andA A ‘0

IV. Error Analysis of DFT Over Sy

In Eq. (17), let || <2+ 4 = \/“ oM, where @ =
o, + zﬁ such that Ioz I Iﬁ | <A=2 M In most digital 31gnal
processmg appllcatlons the input data @ _is an integer complex
number, each component of an is represented say, to at most
8 bit accuracy, i.e., |0é,,l lﬁ i< < oM , where 0 < 7\ < 8. Also
let

XX )
Re{w"*} = x  =— +—=+ - +— +
nk 2 A
2 2 2
y
Y. A
neky — =172 _ 2
Im{w" "} = Yk ) + o + - +
2 2

If one truncates both x, , and y,_, by 272 gigits, then the
truncated sequences for 65” k become

x

x x A
Re{&"" k}=Ynk=-—2l+——g+—3-+ >
' 2 23 27\2

Y

Yo ¥ y A
Im{&" % = )’7nk=—-i1-+—2 R —
’ 22 23 22

The error of 4, in Eq. (16) due to the truncated sequence

n k
e = = nek _ ~n+k
A, ~A 1 = | g, (-5
n=0
P ‘
Y gyl - @k (25)
n=0
But Re |w"*F = 35"*%| | Im |w""* ~ & F| < B~1 = 27*2,
Thus, |w™' ¥ - &k <2 - 2722, Hence since la,| <

/2 + 2M Eq. (25) becomes
M, -T | S d-yTe2M 22"

26

g oMty
= e (26)

where ¢ is the desired error. Since Ia l, |B | < , then,
from Eq (19), the product of the dynamlc range A 2 ! and
B=22 s

a2t gt <(M; ) (272)
Thus,
Ny o M-1)
L (27b)
2t .2d
The substitution of Eq. (27b) into Eq. (26) yields
A+l
(@212
«=wr-nn (28)
Example 5: Let M = F, + F, = (22°*) + (22" + 1) and

d =26 and A, = 8. Then (d M2 = (26 . 29)2 =230 By
Eq. (19), the dynamlc range of the components of &3" kg

Q2D e
29 . o7 -

B =2

where A, = 31. By Eq. (28), the de31red error of 4, due to the
scaled truncated sequence w” ' by 22 =2%% is

230 20~2 17

((2”+1)(2‘6+1) 2 2%

V. A VLSI Design for Computing the
DFT Over Sy

In this section, a VLSI architecture is developed for com-
puting the d-point DFT over the direct sum of Zpk+i[i] using
two copies of the finite ring ZFk_”, for all j. This VLSI pro-
cessor for computing Eq. (17) is composed of d basic cells.
Each basic cell performs a sum and product operation over

Sy>where M=F, -+ F, ... F.Thatis,
(a],az,...,ar)<—(al,a,z,...,ar)
+(b,, 2,...,br)-(c],cz,...,cr)



where “« denotes the operation “is replaced by.” The
VLSI architecture of the DFT, using the Fermat residue num-
ber system with computations in Zy[7] is illustrated in the
following two simple examples.

The calculations of the first example were illustrated in
example 3 in Section IV. A VLSI architecture structure for
computing a 4-point DFT over Z”[i] for this example is
shown in Fig. 1. This figure contains 4 basic cells. The func-

tion of each basic cell is

(@3 < @2+ D) (T

= (@@+b+0),,, @5 D)) (29)

Equation (29) is computed by using the direct sum of two
copies of Z . The w™*¥ is first scaled by B = 2%, In this
example, w""‘ = "'k, First the integer complex number
sequence a, under the mapping ¢ are converted from

17 1i] into (a, @) € S, for 1 <i <4 and are sent to all of
the cells mmultaneously Each register in Fig. 1 is composed
of two 5-bit subregisters & and @ of (&, @) € S|,. (&, @) is
stored in these two 5-bit subregisters.

Assume initially that all registers are set to zero. After the
input data are entered completely, the components of 4, in
S,, given by Eq. (23b) are contained in registers B, for 0 <
k < 3. The values computed in this manner are shlfted sequen-
tially out of register R,. Next these values are converted by
the inverse mappmg ¢‘1 into A = a + zb for 0 <k <3.
Finally, these A are scaled back to the scale of the original
complex numbersA by B =1forl <k<4,

The second example in this section illustrates in example 4
for the application of theorem 3 to the VLSI design of a DFT.
A structure for computing the 4-point DET over Zg, [{] is
shown in Fig. 2. In this figure, the function of each cell is

(2, )5, 4, 3),,) < (4, 7)) (4, T),,)

(), B))ss (b, B))1)
X (e T)gr (6 T)y)

= ((al +bl cl’ﬁi +bl ) cl)S’

(@, tb, ¢, @ +b, ¢

ARV Y

Equation (30) is computed by usmg the direct sum of two
copies of Z, and Z, . The w"'¥ is first scaled by B = 2°. In
this example antk = Mk, The complex integer number
sequence a, under the mapping 8§ = ¢ « 9 is converted from

Zglil to (e, ,, 7, )0 (0,0 G, Di7) €Sgs =S5 TS, and is
transferred to all of the cells s1mu1taneously Each reglster
in Fig. 2 is composed of four subregisters, where the first
two are 3- bit subregisters and the last two are 5-bit subregis-
ters. (2, ,» @, ,)5 and (a a,, @, ,),, are stored in two 3-bit and
5-bit subreglsters respectively. Assume initially that all regis-
ters are set to zero. After the input data is entered completely,
the results given in Eq. (24b) are stored in register R, for
0 < k < 3. The above results computed in this manner are
shifted sequentially out of register R. Using 1nverse mapping
§-1 these values are converted then to Ak fy + z&k for
0 < k < 3. Finally, these A are scaled back to the scale of
the original complex numbers A by B! =1 for 0 <<k <3.
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Fig. 1. The systolic array to compute a 4-point DFT over the direct sum of two copies of Z,,
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Fig. 2. The systolic array to compute a 4-point DFT over the direct sum of Zg[i] and Z,,[i],
where Z[i] and Z,,[i] are represented by two copies of Z; and Z,,, respectively




Appendix A

To show that M, Yin Eq. (7c) satisfies the congruence M, C M =1 mod F, for k <n<r, consider first the case for n = £.
Substituting M in Eq (7c) into M, + M;" yields

M M= @ @)L @2 2R
(2+2...2)270-F)
\_W'—_J

2!‘—-’6

]

= 2 h B =1 mod 22% 4 1

Next consider the case forn=k+i+ 1, where k +1 <n <r. Substituting M;l in (7¢) into M, - M;l yields the following:

e+

Mot = @ e en. @2 @ e 22 1) (-2)!

X 2—(r—k+i'|j1)) R (22k - 1)

@ -0 @+ @™ 2 ey @ ey

il

X 2-—(r~(lc+i+1))

(ki1 1y @ 1) 2 1) (<)) « g —Gerinn)

= (-2)(2°2...2)(-2)t » o (r-Crir1)
Nyt

A (r~(k+i+1)

it

(=2) 20+ D) (L)1 o g(r-(e+it1)

1 mod 22k+[+1 fork+l<n<r

i

where n =k +i+ 1.
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